BIPOLAR ANALOG INTEGRATED CIRCUIT UPC3226TB

5 V , SILICON GERMANIUM MMIC MEDIUM OUTPUT POWER AMPLIFIER

DESCRIPTION

The $\mu \mathrm{PC} 3226 \mathrm{~TB}$ is a silicon germanium (SiGe) monolithic integrated circuit designed as IF amplifier for DBS tuners. This IC is manufactured using our $50 \mathrm{GHz} \mathrm{fmax}_{\text {UHS2 }}$ (Ultra High Speed Process) SiGe bipolar process.

FEATURES

- Low current
: Icc = 15.5 mA TYP. @ Vcc = 5.0 V
- Medium output power
: Po (sat) $=+13.0 \mathrm{dBm}$ TYP. @ $\mathrm{f}=1.0 \mathrm{GHz}$
: Po (sat) $=+9.0 \mathrm{dBm}$ TYP. @ $\mathrm{f}=2.2 \mathrm{GHz}$
- High linearity
$: \mathrm{Po}_{(1 \mathrm{~dB})}=+7.5 \mathrm{dBm}$ TYP. @ $\mathrm{f}=1.0 \mathrm{GHz}$
: $\mathrm{Po}(1 \mathrm{~dB})=+5.7 \mathrm{dBm}$ TYP. @ $\mathrm{f}=2.2 \mathrm{GHz}$
- Power gain : Gp=25.0 dB TYP. @ f=1.0 GHz
- Noise Figure : NF = 5.3 dB TYP. @ f=1.0 GHz
- Supply voltage : Vcc $=4.5$ to 5.5 V
- Port impedance : input/output 50Ω

APPLICATIONS

- IF amplifiers in LNB for DBS converters etc.

ORDERING INFORMATION

Part Number	Order Number	Package	Marking	Supplying Form
μ PC3226TB-E3	μ PC3226TB-E3-A	6-pin super minimold (Pb-Free) $^{\text {Note }}$	C3N	Embossed tape 8 mm wide. $1,2,3$ pins face the perforation side of the tape. Qty $3 \mathrm{kpcs} /$ reel..

Note With regards to terminal solder (the solder contains lead) plated products (conventionally plated), contact your nearby sales office.

Remark To order evaluation samples, please contact your nearby sales office
Part number for sample order: $\mu \mathrm{PC} 3226 \mathrm{~TB}$

Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

PIN CONNECTIONS

PRODUCT LINE-UP OF 5 V-BIAS SILICON MMIC MEDIUM OUTPUT POWER AMPLIFIER $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{GHz}, \mathrm{Vcc}_{\mathrm{c}}=\mathrm{V}_{\text {out }}=5.0 \mathrm{~V}, \mathrm{Zs}=\mathrm{Z} \mathrm{L}=50 \Omega\right.$)

Part No.	$\begin{gathered} \mathrm{fu}_{\mathrm{u}} \\ (\mathrm{GHz}) \end{gathered}$	Po (sat) (dBm)	Gp (dB)	$\begin{aligned} & \mathrm{NF} \\ & \text { (dB) } \end{aligned}$	$\begin{aligned} & \mathrm{Icc} \\ & (\mathrm{~mA}) \end{aligned}$	Package	Marking
$\mu \mathrm{PC} 2708 \mathrm{~TB}$	2.9	+10.0	15	6.5	26	6-pin super minimold	C1D
$\mu \mathrm{PC} 2709 \mathrm{~TB}$	2.3	+11.5	23	5.0	25		C1E
$\mu \mathrm{PC} 2710 \mathrm{~TB}$	1.0	+13.5	33	3.5	22		C1F
$\mu \mathrm{PC} 2776 \mathrm{~TB}$	2.7	+8.5	23	6.0	25		C2L
$\mu \mathrm{PC} 3223$ TB	3.2	+12.0	23	4.5	19		C3J
$\mu \mathrm{PC} 3225 \mathrm{~TB}$	2.8	$+15.5^{\text {Note }}$	$32.5{ }^{\text {Note }}$	$3.7{ }^{\text {Note }}$	24.5		C3M
$\mu \mathrm{PC} 3226 \mathrm{~TB}$	3.2	+13.0	25	5.3	15.5		C3N

Note $\mu \mathrm{PC} 3225 \mathrm{~TB}$ is $\mathrm{f}=0.95 \mathrm{GHz}$

Remark Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Ratings	Unit
Supply Voltage	$\mathrm{Vcc}^{\prime \prime}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	6.0	V
Total Circuit Current	Icc	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Note	40
Power Dissipation	PD_{D}	$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	270	mA
Operating Ambient Temperature	T_{A}		-40 to +85	mW
Storage Temperature	$\mathrm{T}_{\text {stg }}$		-55 to +150	${ }^{\circ} \mathrm{C}$
Input Power	Pin	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	

Note Mounted on double-sided copper-clad $50 \times 50 \times 1.6 \mathrm{~mm}$ epoxy glass PWB

RECOMMENDED OPERATING RANGE

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply Voltage	$\mathrm{Vcc}_{\mathrm{cc}}$		4.5	5.0	5.5	V
Operating Ambient Temperature	T_{A}		-40	+25	+85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{out}}=5.0 \mathrm{~V}, \mathrm{Z}_{\mathrm{s}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current	Icc	No input signal	12.5	15.5	19.5	mA
Power Gain 1	Gp1	$\mathrm{f}=0.1 \mathrm{GHz}, \mathrm{P}_{\text {in }}=-30 \mathrm{dBm}$	22.0	24.0	26.0	dB
Power Gain 2	Gp2	$\mathrm{f}=1.0 \mathrm{GHz}, \mathrm{P}_{\text {in }}=-30 \mathrm{dBm}$	23.0	25.0	27.5	
Power Gain 3	Gp3	$\mathrm{f}=1.8 \mathrm{GHz}, \mathrm{P}_{\text {in }}=-30 \mathrm{dBm}$	23.0	26.0	29.0	
Power Gain 4	Gp4	$\mathrm{f}=2.2 \mathrm{GHz}, \mathrm{Pin}_{\text {in }}=-30 \mathrm{dBm}$	23.0	26.0	29.0	
Power Gain 5	Gp5	$\mathrm{f}=2.6 \mathrm{GHz}, \mathrm{Pin}_{\text {in }}=-30 \mathrm{dBm}$	22.5	25.5	29.0	
Power Gain 6	Gp6	$\mathrm{f}=3.0 \mathrm{GHz}, \mathrm{Pin}_{\text {in }}=-30 \mathrm{dBm}$	22.0	25.0	28.5	
Saturated Output Power 1	$\mathrm{Po}{ }_{(\text {(sat) }} 1$	$\mathrm{f}=1.0 \mathrm{GHz}, \mathrm{Pin}^{\text {in }}=-2 \mathrm{dBm}$	+10.0	+13.0	-	dBm
Saturated Output Power 2	$\mathrm{Po}{ }_{\text {(sat) }} 2$	$\mathrm{f}=2.2 \mathrm{GHz}, \mathrm{Pin}^{\text {in }}$ - 8 dBm	+6.0	+9.0	-	
Gain 1 dB Compression Output Power 1	$\mathrm{Po}{ }_{(1 \mathrm{~dB})} 1$	$\mathrm{f}=1.0 \mathrm{GHz}$	+5.0	+7.5	-	dBm
Gain 1 dB Compression Output Power 2	$\mathrm{Po}(1 \mathrm{~dB}) 2$	$\mathrm{f}=2.2 \mathrm{GHz}$	+3.0	+5.7	-	
Noise Figure 1	NF1	$\mathrm{f}=1.0 \mathrm{GHz}$	-	5.3	6.0	dB
Noise Figure 2	NF2	$\mathrm{f}=2.2 \mathrm{GHz}$	-	4.9	6.0	
Isolation 1	ISL1	$\mathrm{f}=1.0 \mathrm{GHz}, \mathrm{Pin}_{\text {in }}=-30 \mathrm{dBm}$	31	34	-	dB
Isolation 2	ISL2	$\mathrm{f}=2.2 \mathrm{GHz}, \mathrm{Pin}_{\text {in }}=-30 \mathrm{dBm}$	33	36	-	
Input Return Loss 1	RLin1	$\mathrm{f}=1.0 \mathrm{GHz}, \mathrm{P}_{\text {in }}=-30 \mathrm{dBm}$	10.0	14.0	-	dB
Input Return Loss 2	RLin2	$\mathrm{f}=2.2 \mathrm{GHz}, \mathrm{Pin}_{\text {in }}=-30 \mathrm{dBm}$	9.0	13.0	-	
Output Return Loss 1	RLout1	$\mathrm{f}=1.0 \mathrm{GHz}, \mathrm{Pin}_{\text {in }}=-30 \mathrm{dBm}$	10.0	13.0	-	dB
Output Return Loss 2	RLout2	$\mathrm{f}=2.2 \mathrm{GHz}, \mathrm{Pin}_{\text {in }}=-30 \mathrm{dBm}$	10.0	13.0	-	
Input 3rd Order Distortion Intercept Point 1	IIP31	$\begin{aligned} & \mathrm{f} 1=1000 \mathrm{MHz}, \mathrm{f} 2=1001 \mathrm{MHz}, \\ & \mathrm{Pin}=-30 \mathrm{dBm} \end{aligned}$	-	-5.0	-	dBm
Input 3rd Order Distortion Intercept Point 2	IIP32	$\begin{aligned} & \mathrm{f} 1=2200 \mathrm{MHz}, \mathrm{f} 2=2201 \mathrm{MHz}, \\ & \mathrm{Pin}=-30 \mathrm{dBm} \end{aligned}$	-	-11.0	-	
Output 3rd Order Distortion Intercept Point 1	$\mathrm{OIP}_{3} 1$	$\begin{aligned} & \mathrm{f} 1=1000 \mathrm{MHz}, \mathrm{f} 2=1001 \mathrm{MHz}, \\ & \mathrm{Pin}=-30 \mathrm{dBm} \end{aligned}$	-	+20.0	-	dBm
Output 3rd Order Distortion Intercept Point 2	$\mathrm{OIP}_{3} 2$	$\begin{aligned} & \mathrm{f} 1=2200 \mathrm{MHz}, \mathrm{f} 2=2201 \mathrm{MHz}, \\ & \mathrm{Pin}_{\mathrm{in}}=-30 \mathrm{dBm} \end{aligned}$	-	+15.0	-	
2nd Order Intermodulation Distortion	IM_{2}	$\begin{aligned} & \mathrm{f} 1=1000 \mathrm{MHz}, \mathrm{f} 2=1001 \mathrm{MHz}, \\ & \mathrm{Pin}=-30 \mathrm{dBm} \end{aligned}$	-	43.0	-	dBc
K factor 1	K1	$\mathrm{f}=1.0 \mathrm{GHz}$	-	1.4	-	-
K factor 2	K2	$\mathrm{f}=2.2 \mathrm{GHz}$	-	1.6	-	-

TEST CIRCUIT

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

COMPONENTS OF TEST CIRCUIT FOR MEASURING
ELECTRICAL CHARACTERISTICS

	Type	Value
C1, C2	Chip Capacitor	100 pF
C3	Chip Capacitor	1000 pF
C4	Feed-through Capacitor	1000 pF
L	Chip Inductor	100 nH

INDUCTOR FOR THE OUTPUT PIN

The internal output transistor of this IC, to output medium power. To supply current for output transistor, connect an inductor between the $\mathrm{V}_{\mathrm{cc}} \operatorname{pin}(\operatorname{pin} 6)$ and output pin (pin 4). Select inductance, as the value listed above.

The inductor has both DC and AC effects. In terms of DC, the inductor biases the output transistor with minimum voltage drop to output enable high level. In terms of $A C$, the inductor makes output-port impedance higher to get enough gain. In this case, large inductance and Q is suitable.

CAPACITORS FOR THE Vcc, INPUT AND OUTPUT PINS

Capacitors of 1000 pF are recommendable as the bypass capacitor for the Vcc pin and the coupling capacitors for the input and output pins.

The bypass capacitor connected to the Vcc pin is used to minimize ground impedance of Vcc pin. So, stable bias can be supplied against Vcc fluctuation.

The coupling capacitors, connected to the input and output pins, are used to cut the DC and minimize RF serial impedance. Their capacitances are therefore selected as lower impedance against a 50Ω load. The capacitors thus perform as high pass filters, suppressing low frequencies to DC.

To obtain a flat gain from 100 MHz upwards, 1000 pF capacitors are used in the test circuit. In the case of under 10 MHz operation, increase the value of coupling capacitor such as 10000 pF . Because the coupling capacitors are determined by equation, $C=1 /(2 \pi R f c)$.

ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD

COMPONENT LIST

	Value
C1, C2	100 pF
C3, C4	1000 pF
L1	100 nH

Notes

1. $30 \times 30 \times 0.4 \mathrm{~mm}$ double sided copper clad polyimide board.
2. Back side: GND pattern
3. Solder plated on pattern
4. ○○: Through holes

TYPICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\text {out }}=5.0 \mathrm{~V}, \mathrm{Z}_{\mathrm{s}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega\right.$, unless otherwise specified)

CIRCUIT CURRENT vs. SUPPLY VOLTAGE

POWER GAIN vs. FREQUENCY

INPUT RETURN LOSS vs. FREQUENCY

CURCUIT CURRENT vs.
OPERATING AMBIENT TEMPERATURE

ISOLATION vs. FREQUENCY

OUTPUT RETURN LOSS vs. FREQUENCY

Remark The graphs indicate nominal characteristics.

OUTPUT POWER vs. INPUT POWER

OUTPUT POWER vs. INPUT POWER

Frequency $\mathrm{f}(\mathrm{MHz})$

Remark The graphs indicate nominal characteristics.

IM2 vs. INPUT POWER

Remark The graphs indicate nominal characteristics.

S-PARAMETERS $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{Vcc}=\mathrm{Vout}=5.0 \mathrm{~V}, \operatorname{Pin}=-30 \mathrm{dBm}\right)$

S11-FREQUENCY

S22-FREQUENCY

PACKAGE DIMENSIONS

6-PIN SUPER MINIMOLD (UNIT: mm)

NOTES ON CORRECT USE

(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation). All the ground terminals must be connected together with wide ground pattern to decrease impedance difference.
(3) The bypass capacitor should be attached to the Vcc line.
(4) The inductor (L) must be attached between Vcc and output pins. The inductance value should be determined in accordance with desired frequency.
(5) The DC cut capacitor must be attached to input and output pin.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of $220^{\circ} \mathrm{C}$ or higher Preheating time at 120 to $180^{\circ} \mathrm{C}$ Maximum number of reflow processes Maximum chlorine content of rosin flux (\% mass)	: $260^{\circ} \mathrm{C}$ or below : 10 seconds or less : 60 seconds or less : 120 ± 30 seconds : 3 times : 0.2\%(Wt.) or below	IR260
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (\% mass)	: $260^{\circ} \mathrm{C}$ or below : 10 seconds or less : $120^{\circ} \mathrm{C}$ or below : 1 time : 0.2\%(Wt.) or below	WS260
Partial Heating	Peak temperature (terminal temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (\% mass)	: $350^{\circ} \mathrm{C}$ or below : 3 seconds or less : 0.2\%(Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating).

Subject: Compliance with EU Directives

CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE.

CEL Pb-free products have the same base part number with a suffix added. The suffix -A indicates that the device is Pb -free. The -AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals. All devices with these suffixes meet the requirements of the RoHS directive.

This status is based on CEL's understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information.

Restricted Substance per RoHS	Concentration Limit per RoHS (values are not yet fixed)	Concentration contained in CEL devices	
Lead (Pb)	<1000 PPM	-A	-AZ
Mercury	<1000 PPM	Not Detected	(*)
Cadmium	<100 PPM	Not Detected	
Hexavalent Chromium	<1000 PPM	Not Detected	
PBB	<1000 PPM	Not Detected	
PBDE	<1000 PPM	Not Detected	

If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative.

Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall CEL's liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to customer on an annual basis.
See CEL Terms and Conditions for additional clarification of warranties and liability.

